Subject: VCE (Mathematical Methods)

Unit: 3

Week	Area of Study	Learning Focus
Term 4	Headstart	Functions and Relations: 1A-1H, 2A, 2B - Investigate concepts of relations and functions, domain, implied (maximal) domain, restrictions and range. - Investigate and sketch graphs for odd and even functions, one-to-one and inverse functions, sums and products and addition of ordinates. - Define and use composite functions, strictly increasing and decreasing functions and power functions and their graphs. - Apply a knowledge of functions to solve problems.
$\begin{gathered} \text { Term } 1 \\ 1-3 \end{gathered}$	Functions and Graphs Algebra	Coordinate Geometry and Matrices: 2C - 2G, 3A, 3B. - Solving linear and literal equations, simultaneous linear equations with two or more variables and interpret the geometry - Find the distance between two points, midpoint of a line segment and gradient of a straight line. - Recognise different forms of the equation of a straight line and use matrices. - Apply a knowledge of linear functions to solve problems.
4-5	Functions and Graphs Algebra	Transformations: 3C-3I - Use notation for translations, reflections in an axis and dilations from an axis and determine sequences of transformations given an original and image equation, and use them to sketch graphs. - Consider transformations of power functions. - Determine function rules from transformations and graphs. - Use matrices to define transformations and determine images.
6	Functions and Graphs Algebra	Polynomial Functions: 3J, 4A -4F - Revise properties of quadratic functions and consider properties of cubic functions and polynomials of higher degree. - Add, subtract, multiply and divide polynomials, equate coefficients and use sign diagrams. - Use the language of polynomials, the remainder theorem, factor theorem and the rational-root theorem and identify the linear factors of cubic and quartic polynomials. - Determine the rules for given polynomial graphs and apply polynomial functions to problem solving.
7	Functions and Graphs Algebra	Exponential and Logarithmic Functions: 4G-4H, 5A - 5E - Graph exponential and logarithmic functions and their transformations. - Revise the index and logarithm laws and solve exponential and logarithmic equations. - Determine rules for graphing exponential and logarithmic functions and find their inverses. - Apply exponential functions to modelling growth and decay.
8-9	Functions and Graphs Algebra	Circular Functions: 5F-5I, 6A-6C Circular Function Graphing: 6D-6L - Define the sine, cosine and tangent circular functions, explore their symmetry properties, apply the Pythagorean Identity, find exact values and sketch graphs of circular functions and their transformations. - Measure angles in degrees and radians, solve equations and apply circular functions in modelling periodic motion. - Use addition of ordinates, determine rules for graphing and find general solutions of trigonometric equations - Apply circular functions to problem solving
10	Functions and Graphs Algebra	Further Functions: 7A-7E - Graph power functions with rational non-integer index.

		- Revisit sums, differences and products of functions, addition of ordinates, one-to-one functions, strictly increasing and decreasing functions, odd functions and even functions, composite functions, inverse functions and transformations of functions. - Use functional equations to describe properties of functions. - Use parameters to describe families of functions.
	Calculus	Differentiation: 9A-9C - Understand limits, the definition of differentiation and the notation for the derivative of a polynomial function. - Find the gradient of a tangent to the graph of a polynomial function by calculating its derivative.
$\begin{gathered} \text { Term } 2 \\ 1-3 \end{gathered}$	Calculus	Differentiation continued: 9D-9M - Understand and use the chain, product and quotient rules. . - Differentiate rational powers, exponential, natural logarithmic and circular functions. - Deduce the graph of the derivative from the graph of a function and vice versa, determine continuity and differentiability
4-5	Calculus	Applications of Differentiation: 10A - 10G - Find the equations of the tangent and the normal at a given point. - Find stationary points and state their nature. - Use differentiation techniques to sketch graphs and show families of functions - Solve maximum and minimum problems, determine absolute maximum and minimum values and apply derivatives to rates of change problems.
6	Calculus	Pre-SAC Review
7-8	Calculus	UNIT 3 FN \& CALC SAC: 7 lessons, 350 mins $=5 \mathrm{hrs}, 50 \mathrm{mins}$ A function and calculus-based investigation of 4-6 hours over 1-2 weeks.
9-10	Calculus	Integration: 11A-11E - Integrate polynomial functions, exponential functions and circular functions. eg: $(a x+b)^{r}, e^{k x}$ - Estimate the area under the graph of a function.
$\begin{gathered} \text { Term } 3 \\ 1-2 \end{gathered}$	Calculus	Applications of Integration: 11F-11K - Integrate by Recognition - Use the Fundamental Theorem of Calculus to determine definite integrals and find the exact areas above and below the x-axis and between two curves.
3	Probability and Statistics	Discrete Random Variables And Their Probability Distributions: 13A-13D - Review the basic concepts of probability including conditional probability. - Define discrete random variables and their probability distributions - Calculate and interpret expected value (mean), variance and standard deviation for a discrete random variable. - Understand that for many random variables approximately 95% of the distribution is within two standard deviations of the mean.
4	Probability and Statistics	The Binomial Distribution (Bernouilli Trials): 14A - 14D Finding the Sample Size, Proofs for the Expectation and Variance - Define a Bernoulli sequence and review the binomial probability distribution. - Interpret graphical skewing for different values of the binomial distribution parameters. - Calculate and interpret the mean, variance and standard deviation for the binomial probability distribution. - Use the binomial probability distribution to solve problems. - Find the sample size and proofs for the expectation and variance

5	Probability and Statistics	Pre-SAC Review 6 7 and Statistics

