Year Level: 12 Subject: Chemistry Unit 3				
Semeste	er: 1			
Week	Unit	Learning focus		
1	Types of fuels	Compare a variety of fossil fuels and biofuels with reference to origin, renewability		
		and environmental impacts related to sourcing and combustion.		
2	Energy from fuels	Compare exothermic & endothermic reactions and systems.		
		Calculate the energy of combustion from a variety of fuels.		
3	Gases	Explore the properties of gases and relate these to kinetic molecular theory.		
4	Combustion of fuels	Perform stoichiometric calculations relating to gases and the energy produced		
		during the combustion of fuels.		
5	Redox reactions	Use oxidation numbers to write half and overall equations for redox reactions and		
		to identify conjugate oxidising and reducing agents.		
	Electrochemical series	Describe the common design features of galvanic cells and the energy		
6		transformations involved in their operation.		
O		Use the electrochemical series to predict the products of redox reactions and to		
		calculate maximum cell voltage under standard conditions.		
	Batteries	Describe how different types of galvanic cells are used as a power source for a		
7		range of uses.		
		Describe the factors affecting battery life.		
	Fuel cells	Describe the common design features of fuel cells.		
8		Compare fuel cells and galvanic cells in terms of functions, design features, energy		
		transformations, energy efficiencies and applications.		
0	Rate of chemical	Explain collision theory and factors that affect the rate a chemical reaction,		
9	reactions	including the role of catalysts in changing reaction pathways.		
	Extent of chemical reactions	Compare reversible and irreversible chemical reactions and systems.		
10		Use an equilibrium law for an equilibrium system to calculate the relative amounts		
		of reactants and products.		
	Le Chatelier's Principle	Use Le Chatelier's Principle to explain the effects of changes on a chemical		
11		equilibrium.		
11		Describe how the reaction conditions for an industrial process can be adjusted to		
		ensure optimum efficiency.		
12	Electrolysis	Understand the construction and operation of simple electrolytic cells. Compare		
		electrolytic cells to galvanic cells.		
13	Faraday's Laws of	Apply stoichiometry and Faraday's Laws of Electrolysis to determine amounts of		
	Electrolysis	product, current or time for a particular electrolytic process.		
14 - 15	Scientific	Design and undertake a practical investigation related to energy of fuels.		
	Investigation			
16	Poster of Scientific	Present the methodologies, findings and conclusions of the practical investigation		
	Investigation	in a scientific poster.		
17 -18	Revision	Revise the Unit 3 concepts and apply them to past papers and trial exams.		
19	Unit 4	Explain the diversity of carbon compounds.		
	Structure and	Know the molecular, structural and semi-structural formulae of a variety of		
	nomenclature of	organic compounds.		
	organic compounds	Identify different types of isomers.		
20	Structure and	Identify the functional groups found in a variety of families of organic compounds.		
	nomenclature of	Name a range of organic compounds using systematic nomenclature protocols.		
	organic compounds			

Year Level:12 Subject: Chemistry Unit 4

Semester:2

Week	Topic	Learning Focus
1	Structure and	Explain the diversity of carbon compounds.
	nomenclature of	Know the molecular, structural and semi-structural formulae of a variety
	organic compounds	of organic compounds.
		Identify different types of isomers.
2	Structure and	Identify the functional groups found in a variety of families of organic
	nomenclature of	compounds.
	organic compounds	Name a range of organic compounds using systematic nomenclature
		protocols.
	Chemical Analysis	Carry out chemical analyses using spectroscopy and chromatography.
	Workshop	
3	Properties and	Explain trends in physical properties of a variety of organic compounds.
	reactions of organic	Describe and write chemical equations for some reactions involving
	compounds	organic compounds.
4	Properties and	Identify organic reaction pathways for the synthesis of a variety of
	reactions of organic	organic compounds including esters.
	compounds	Calculate percentage yield and atom economy for organic reaction
		pathways.
5	Spectroscopic	Describe the principles and applications of infrared and nuclear magnetic
	techniques	resonance spectroscopy.
		Make qualitative and quantitative interpretations of data from these
		procedures.
6	Spectroscopic	Describe the principles and applications of mass spectrometry and make
	techniques	qualitative and quantitative interpretations of mass spectra.
		Determine molecular structures by utilising a variety of analytical
		techniques
7	Chromatography	Describe the principles and applications of a variety of types of
		chromatography.
		Make qualitative and quantitative interpretations of chromatograms
		from these procedures.
8	Volumetric analysis	Determine the concentration of organic compounds by volumetric
		analysis, including acid-base and redox titrations.
9	Structure and	Describe the molecular structure, functions and formation of proteins,
	bonding in food	carbohydrates and lipids.
	molecules	Describe the biological significance, structure and solubility of some
		vitamins.
10	Metabolism of food	Describe the metabolism of a variety of foods in the human body.
	in the human body	Describe the structure and function of enzymes and co-enzymes.
11	The energy content	Compare the energy values of carbohydrates, proteins and lipids, and
	of food	calculate the energy values of foods.
		Explain the principles of calorimetry and compare solution and bomb
		calorimetry.
12 - 13	Revision and past	Revise the Unit 3 & 4 concepts and apply them to past exam questions
	papers	
14	Trial Exam	Complete a Unit ¾ Trial exam under exam conditions.
		Review the Trial Exam in class.