Subject: VCE Mathematical Methods

Unit 1

Week	Area of Study	Learning Focus
	Algebra	Apply index laws to simplify expressions.
Headstart		 Understand manipulation of exponential expressions, including prime decomposition.
1 - 4	Functions and Graphs:	• Employ expansion formulae eg: distributive law, 2 brackets, D.O.P.S., perfect squares
	Quadratic Functions,	 Become familiar with factorising formulae and to employ factorising
	Factorisation, Solving equations.	techniques including with algebraic fractions, to simplify or solve equations: eg: common factor, substitution, distributive law, 2 brackets, D.O.P.S., perfect squares
		 Solve quadratic equations and inequations, using factorising, the Null Factor Law, Completing the Square and the Quadratic Formula
		Determine the number and nature of real roots using the Discriminant
		 Identify key quadratic features: axis intercepts, turning point and axis of symmetry, maximum or minimum values
		• Find the Turning Point using the x-intercepts and Turning Point Form
		Transformations of quadratic functions via dilations ('parallel to an axis'
		and 'from an axis'), reflections in an axis and translations, including using matrices
		Sketch graphs of quadratic functions
		 Identify characteristics of families of quadratic functions
		 Solve simultaneous quadratic and linear equations
		Apply quadratic functions to solve problems
5 - 6	Functions and Graphs:	 Recognise rules of the Rectangular Hyperbola, Truncus & Square Root Relations
	Hyperbolas, Truncus &	• Sketch graphs of the power relations $f(x) = x^n$, $n \in \{-2, -1, \frac{1}{2}, \frac{1}{3}\}$
	Square Root Functions	• Apply transformations of the graphs to the form $y = a (x + b)^n + c$
	and Circles	Identify key features of these 3 relations
		Determine rules for these relations using specified information
		 Recognise the rule for basic circles the equation of a circle with a specified radius and control
		 Identify key features of circles
		 Determine rules for circles using known information
		Sketch graphs of circles
		Apply translations to circles
	Probability	 Employ terminology such as random experiments, sample spaces,
7 - 10	,	outcomes, elementary and compound events
		Understand principles of non-negative probabilities and the sum of
		probabilities is one.
		• Simulate experiments using simple random generators such as coins, dice,
		spinners and technology
		Calculate experimental probabilities
		 Represent sample spaces and events: lists, grids, Venn diagrams, tree diagrams, Kanaugh tables (eg: conditional probabilities)
		 Interpret results, including informal consideration of proportions in samples
		• Apply Addition Rule: $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$
		In multi-stage experiments, multiply probabilities when events occur
		together (AND) and add probabilities when alternative outcomes are possible (OR)
		 Apply Conditional Probability formula in terms of reduced sample space, the relations

-		
		$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$ or $\Pr(A \cap B) = \Pr(A \mid B) \times \Pr(B)$ • Determining Independence $\Pr(A).\Pr(B) = \Pr(A \cap B)$ • Determine Mutually Exclusive Events $\Pr(A \cap B) = 0$, hence $\Pr(A \cup B) = \Pr(A) + \Pr(B)$ • Apply probability concepts to worded problems• Understand the law of total probability for two events $\Pr(A) = \Pr(A \mid B) \Pr(B) + \Pr(A \mid B')\Pr(B')$ • Understand that for pairwise independent events A and B, $\Pr(A \mid B) = \Pr(A)$, $\Pr(B \mid A) = \Pr(B)$ and $\Pr(A \cap B) = \Pr(A) \times \Pr(B)$ • Informally consider sample proportions
	Functions and Graphs:	Become familiar with and employ set notation
11 - 13		 Identify if a relation is a function and apply the Vertical Line Test
	Notation, Domain and	Identify types of correspondence
	functions, Modelling	 Employ notation for and determine the rule of a function, domain, (including maximal, natural or implied domain), co-domain and range of a relation.
		 Sketch graphs of functions including hybrid functions
		 Identify examples of relations that are not functions and their graphs such as x = k, x = ay² and circles
		 Become familiar with the relationship between the graph of a one-to-one function, its inverse function and reflection in the line y = x
		 Determine the inverse of a one –to-one function
		Employ equations to solve modelled real world problems
		• Apply transformations: Dilations, Reflections, Translations
14 - 17	Functions and Graphs: Cubic and quartic functions.	 Add, subtract, multiply and divide polynomials (polynomial long division) Apply formulae for expanding perfect cubes Factorise cubes using polynomial long division or the sum or difference of cubes formulae Employ the Remainder and Factor Theorems and Rational Root Theorems to identify linear factors of cubics and quartics Solve cubic or quartic equations and inequations numerically (including Numerical Approximation of Roots using the Bisection Method), graphically and algebraically Sketch graphs of functions to degree 4 and other polynomials of higher degree such as g (x) = (x + 2)² (x - 1)³ + 10 Determine the rules for given cubic graphs Understand connections between the roots of a polynomial function, its factors and the horizontal axis intercepts of its graph Recognise the key features and properties of power and polynomial functions and simple combinations of these transformations Employ cubic equations to solve modelled real world problems
18 - 20	Algebra Functions and Graphs: Matrix notation and applications. Using matrices for transformations. Applying transformations to sketch graphs.	 Become familiar with notation for transformations Simplify using addition, subtraction and scalar multiplication Interpret and apply matrices to represent points and transformations Employ matrix equations to determine curve images under linear transformations

Week	Area of Study	Learning Focus
	Algebra	 Convert between index and log statements
1 – 2	Functions and Graphs:	 Simplify using log₁₀, log_e and other bases
		 Evaluate logarithmic expressions
	Logarithms	 Distinguish between exact values and approximate values
		 Simplify and solve equations using the 5 log laws and other logarithmic
		methods: eg $a^{\log ax} = x$ and $\log_a(a^x) = x$
		 Recognise the 'change of base' law
		• Sketch functions of the form $f : R \rightarrow R$, $f(x) = \log_a(x)$, where a >1, and
		the inverse function of $y = a x$,
		 Apply basic graphical transformations of y = log_a(x)
		Apply logarithmic scales
	Probability	 Introduce Addition and Multiplication principles
3 - 4		 Define and apply the concept of arrangements (ie Permutations)
		 Define and apply the concept of selections (ie Combinations)
		 Apply counting methods to probability
		Relate combinations to Pascals triangle and the binomial theorem.
	Algebra	 Review Basic Trigonometry and the relationship of
5 - 7	Functions and Graphs:	tan(x) = sin(x)/cos(x)
		Understand unit circle definitions
	Circular Functions	 Determine the exact value of trigonometric special angles
	Irigonometric	 Convert between radians and degrees and determine arc length
	equations	Employ CAST, symmetry rules and complementary relations
		Solve trigonometric equations including those of worded problems
		• Determine the amplitude, period or mean value of circular functions
		Sketch graphs of circular functions
		Apply transformations of sine and cosine graphs;
		• Employ the identity $\sin^2(x) + \cos^2(x) = 1$
		• Calculate $sin(x) \approx x$ for small values of x
		Use inverse functions and transformations to solve equations of the forme of (her) is a set to
	Calaulua	form Af (bx) + c = k
0 10	Calculus Eurotions and Graphs	Use graphical, numerical and algebraic approaches to estimate or find
8 - 10	Algobra:	an exact value for the gradient of a secant or tangent to a curve at a
	Algebia.	given point
	Rates of Change	Calculate gradient of a secand of average rates of change Calculate rates of change of Delynomials and Hybrid Eurotions
	Velocity	Calculate rates of change Stimate instantaneous rates of change
	Velocity	 Estimate instantations rates of change Use the gradient of a tangent at a point on a graph to describe and
		Ose the gradient of a tangent at a point of a graph to describe and measure instantaneous rate of change
		 Identify rates of change: constant, variable, average and zero
		 Interpret graphs with respect to rate of change such as temperature or
		nollution levels over time, and the height of water in containers of
		different shapes that are being filled at a constant rate
		Relate velocity-time graphs to position-time graphs
		 Consider rates of change in a variety of practical contexts
		 Informally consider continuity and smoothness and instantaneous rate
		of change as a limiting case of the average rate of change
11 - 13	Calculus	• Employ notations for the derivative of a function:
	Functions and Graphs	f'(x), dy/dx, d/dx (f(x)), Dx(f)
	Algebra	Differentiate by First Principles
		• Differentiate by rule including power functions and simple polynomial
	Differentiation	functions
		Become familiar with increasing and decreasing functions and gradient
		sign diagrams

	• • •	Determine the gradient of a tangent to a curve at a point, via the derivative Employ differentiation to solve problems Become familiar with the concept of a limit Evaluate limits including for hybrid functions and using CAS technology Determine continuity and differentiability
14 - 18 Calcul Functi Algeb Applic Differ Antidi	lus ions and Graphs ra: cations of entiation and ifferentiation • • •	Determine the equation of the tangent and normal at a given point on a curve. Employ the derivative in rate of change problems Apply derivatives to locating stationary points and determining their nature: maxima, minima and point of inflection Sketch graphs employing Calculus Apply derivatives to solving maximum or minimum problems Apply derivatives to kinematics Find a family of derivative functions for a given power or polynomial function Determine the numerical approximation of roots of cubic polynomial functions using Newton's method. Employ notation to determine an antiderivative Antidifferentiate by rule including power functions Applying antidifferentiation to rates of change or kinematics problems involving straight line motion Find a family of derivative functions for a given power or polynomial function