| Year Level: 11 | | Subject: Unit 1 Chemistry | | | |--|------------|--|--|--| | Week Area of Learning Focus | | Learning Focus | | | | | Study | | | | | HEADSTA | | To review the structure of a Chemistry Report and learn Scientific Method terminology. | | | | RT | Scientific | | | | | 4 th -7th | Method | | | | | Dec | | | | | | CHRISTMAS HOLIDAYS | | | | | | 2 nd Dec-30 th Jan | | | | | ## Area of Study 1: How can knowledge of elements explain the properties of matter? **Outcome 1:** Relate the position of elements in the periodic table to their properties, investigate the structures and properties of metals and ionic compounds, and calculate mole quantities. | 1 week 1 | Elements | To review the structure of an atom and relate this to elements, molecules and compounds. | | | | | |-------------------------------------|--|--|--|--|--|--| | 31 st Jan- | and the | To construct a relative scale of objects. | | | | | | 2 nd Feb | periodic • To observe electron energy levels with absorption spectra. | | | | | | | | table | | | | | | | 1 week 2 | Elements | To conduct experiments demonstrating trends within the periodic table. | | | | | | 5 th – 9 th | and the | To interpret a series of ionization energies as evidence for electron shells and subshells. | | | | | | Feb | periodic | | | | | | | | table | | | | | | | 1 week 3 | Metals | To examine a variety of metals and determine their common properties. | | | | | | $12^{th} - 16^{th}$ | | To determine the relative reactivity of metals through experimentation. | | | | | | Feb | | | | | | | | 1 week 4 | Metals | To illustrate Dalton's theory that atoms are rearranged in chemical reactions by reacting copper metal in a series of experiments. | | | | | | 19 th - 23 rd | continued | To model the properties of alloys. | | | | | | Feb | | To investigate experimentally the effects of annealing, quenching and tempering metals. | | | | | | 1 week 5 | Ionic | To investigate the physical properties of ionic compounds. | | | | | | 26 th Feb – | Compounds | To determine the empirical formula of an ionic compound experimentally. | | | | | | 2 nd March | | | | | | | | 1 week 6 | Ionic | To determine factors affecting mineral crystals, viewed under a stereomicroscope. | | | | | | 5 th – 9 th | Compounds | To investigate the uses of common ionic compounds. | | | | | | March | | | | | | | | 1 week 7
12 th – 16 th
March | Quantifying atoms and compounds | To visualize the mole using lollies. | | | | | | |--|---|---|--|--|--|--|--| | 1 week 8
19 th – 23 rd
March | Quantifying atoms and compounds continued | To interpret mass spectra to determine the relative atomic masses. | | | | | | | 1 week 9
26 th – 30
March | Quantifying atoms and compounds HOLIDAYS | To solve quantitative exercises involving the mole and Avogadro's constant | | | | | | | | | n the versatility of non-metals be explained? | | | | | | | 7 0 0 | , | | | | | | | | | _ | d explain the properties of carbon lattices and molecular substances with reference to their structures and bonding, use systematic anic compounds, and explain how polymers can be designed for a purpose. | | | | | | | 2 week 10 | Materials | To create ball-and-stick models of simple molecules. | | | | | | | $16^{th} - 20^{th}$ | from | To explain the shape of molecules with reference to their polar/non-polar character. | | | | | | | April | molecules | | | | | | | | 2 week 11 | Materials | To experimentally determine the properties of molecular substances. | | | | | | | 23 rd -27 th | from | To investigate intermolecular attractions using capillary action. | | | | | | | April | molecules
continued | | | | | | | | 2 week 12 | Carbon | To model the allotropes of carbon and determine their properties. | | | | | | | 30 th April | lattices and | To research the applications of carbon nanomaterials. | | | | | | | – 4 th May | carbon
nanomaterial
s | | | | | | | | 2 week 13 | Organic | To research why crude oil reserves around the world have different hydrocarbon compositions. | | | | | | | 7 th - 11 | compounds | To use steam distillation to extract oil from eucalyptus leaves. | | | | | | | May | | To research answer to extended investigation question on crude oil. | | | | | | | | Extended Research Investigation • To commence exam revision, identifying areas of concern. | | | | | | | | 2 week 14 | Extended | To compile extended investigation research and compile Scientific Poster. | | | | | | | 14 th -18 th
May | Research Investigation EXAM To apply knowledge of semester through a practice exam. | | | | | | | **REVISION** | 2 week 15 | EXAM | To continue exam revision. | |-------------------------------------|------------|--| | 21 st – 25 th | REVISION | | | May | | | | 2 week 16 | YEAR 11 | To apply and test knowledge of the semester through examination. | | 28 th May – | EXAMS | | | 1 st June | | | | 2 week 17 | Organic | To create models of a range of alkanes, alkenes and alkynes. | | 4 th -8 th | compounds | To predict trends in melting and boiling points of alcohols, carboxylic acids and non-branched esters through experimentation. | | June | continued | To practice naming organic compounds. | | 2 week 18 | Organic | To solve quantitative exercises involving empirical and molecular formulas of organic compounds. | | 11 th - 15 th | compounds | | | June | continued | | | 2 week 19 | Polymers | To model addition polymerisation of alkenes. | | 18 th – | | To experimentally determine the properties of thermoplastics and thermosetting plastics and explain their differences. | | 22 nd June | | | | 2 week 20 | Polymers | To research the advantages and disadvantages of polymer materials. | | 25 th – 29 th | continued | To design experiments to compare the relative biodegradabilities of different polymers labelled as 'biodegradable'; investigate | | June | | environmental factors that affect biodegradability, for example UV light, pH, heat, water | | | | use a problem-based learning approach to investigate an issue in chemistry, for example, safety issues associated with the use of
nanoparticles in the manufacture of sunscreens | | MID YEA | R HOLIDAYS | | | MID YEA | R HOLIDAYS | | Year Level: 11 Subject: Unit 2 Chemistry Semester: 2 | 000010. | Jeniester. 2 | | | | | | |---------|--|---|--|--|--|--| | Week | Unit | Learning Focus | | | | | | 1 | Properties of | Trends in MP and BP of Group 16 hydrides | | | | | | | water | Specific heat capacity and latent heat of water | | | | | | | | | | | | | | 2 | Water as a | The solution process | | | | | | | solvent | Precipitation reactions | | | | | | | | Ionic equations | | | | | | | | Importance of solvent properties in biological, domestic or industrial contexts | | | | | | 3 | Measurement • Solubility and solubility tables | | | | | | | | of solubility | Solubility curves | | | | | | | and | Units of concentration | | | | | | | concentration | | | | | | | 4-5 | Acid-base | Lower Proported theory | | | | | |--------|--|---|--|--|--|--| | 4-3 | reactions in | Lowry-Bronsted theory Reactions involving acids and bases and equation writing | | | | | | | water | Reactions involving acids and bases and equation writing Ionic product of water, pH | | | | | | | water | | | | | | | | | Strengths of acids and base (No Ka) Dilutions of solutions | | | | | | | | | | | | | | | | Strong and weak acids and bases and dilute and concentration solutions Calculate the state of the second se | | | | | | | | Selected acid-base issue – Ocean acidity | | | | | | 6 | Redox | Oxidation and reduction | | | | | | | reactions in | Writing equations | | | | | | | water • Reactivity series | | | | | | | | | Selected redox issue - Corrosion | | | | | | 7 | Water sample Water distribution and availability | | | | | | | | analysis | Sampling protocols | | | | | | | | Selected water sample and contaminant | | | | | | 8-10 | Analysis for | Sources of salts | | | | | | | salts in water | Mass-mass stoichiometry | | | | | | | | Gravimetric analysis | | | | | | | | Colorimetry and UV-visible spectroscopy | | | | | | | | Atomic absorption spectroscopy and calibration | | | | | | 11 | Analysis for | Organic contaminants in water | | | | | | | organic | Chromatography and HPLC | | | | | | | compounds | | | | | | | Term 4 | | | | | | | | 1-2 | Analysis for | Sources of acids and bases in waterways | | | | | | | acids and | Volume-volume stoichiometry | | | | | | | bases | Volumetric analysis including standard solutions and dilutions | | | | | | | | Practice of stoichiometry | | | | | | 3-4 | Practical | | | | | | | | Investigation | | | | | | | 5 | Complete all | | | | | | | | assessment | | | | | | | | tasks and | | | | | | | | content | | | | | | | 6 | Revision | | | | | | | 7 | Exams | | | | | |